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Weak symmetry of linear differential operators 

L V Poluyanov and A I Voronin 
Institute of Chemical Physics, Academy of Sciences, 142 432 Chemogolovka, Moscow, 
USSR 

Received 12 April 1985 

Abstract. The operator equation for the calculation of invariance operators (the weak 
symmetry operators) connecting the eigenfunctions of one degenerate eigenvalue of a linear 
operator is formulated. The general properties of invariance operators are described. As 
an example, the Schrodinger equation with some potentials of interest is considered. 

1. Introduction 

Consider a linear differential or differential matrix operator A and the corresponding 
eigenvalue and eigenfunction problem 

fih = E"*" (1.1) 

where n = k, 1, m, . . , is the pulti-index. Let us suppose thatAthe properties of strong 
symm5try tor the operator H are described by the operators X i ,  identic!lly commuting 
with H :  [Xi, 21 = 0. We shall call the weak symmetry operators of H a set of such 
operators j j ,  each of which commutes with H on some subset nj of eigenfunctions (Fin: 

[ j j ,  I?]$", = 0 +bn.E nj. (1.2) 

Below, the subset O j  will be defined in each particular case. The definition of the 
symmetry and the symmetry operators traditionally used in quantum mechanics (Wig- 
ner 1959, Landau and Lifshitz 1974) corresponds to the definition of strong symmetry 
given above. In mathematical physics (Miller 1977) the notion of commutation on the 
solutions is used, which is a particular case of the definition of weak symmetry given 
above: the set is the totality of all degenerate (mutually degenerate) eigenfunctions 
of the investigated operator I?. The same symmetry is considered in the paper by 
Poluyanov and Voronin (1983) for the Schrodinger equation. 

In this paper, a constructive method for finding the weak symmetry operators is 
suggested and the usefulness of these operators is shown. 

2. Basic operator equation 

Let ?, , . . . , qN be the set of all mutually commuting strong symmetry operators of fi 
and A I ,  . . . , Arbe the corresponding eigenvalues of these operators. Since the eigen- 
f:nctions of H can be constructed as common eigenfunctions of the operators 
H, Y,, . . . , qN, we will order the ( N +  1) indices (discrete or continuum spectral 
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2020 L V Poluyanov and A I Voronin 

quantum numbers) to the eigenfunction and  to a mylti-index in (1.1) assumed to be 
( N  + 1) dimensional: (L, = $k,k,, ,k,. Then, finding S from an operator equation: 

(2.1) 

is enough to satisfy the equation [SA]&+, ,k, = 0. The eigenvalues E ;  A , ,  . . . , iN 
must correspond to the spectral (quantum) numbers k, k , ,  , , . , kN and U, U , ,  . . . , UN 
are the linear differential (or differential matrix) operators. 

The operator equation (2.1) is equivalent to the system of operator equations: 

[ i , f i]= fi(fi - E )  + fi,( PI - A ,) + . . . + f i N  ( PN - 1 

[Mi] = 0 

& = E  ?, = A,  i = l , , . . ,  N 
( 2 . 1 ~ )  

for the weak symmetry operator 
The weak symmetry operator S, obeying !heA operato: equation (2.1), commutes 

with fi only on the single eigenfunction (if U, U , ,  . . . , U,  differ from zero). Later, 
we shall sh9w that in this case the eigenfunction belongs to the degenerate eigenvalue, 
if (L,, and $(LflAdo not simply differ by the constant phase factor. However, if some 
operators ,U, U , , .  . . , U, on>he right-hand side of (2.1) are the operator zeros, then 
operator S commutes with HAo? the larger set of the eigenfunctions. More exactly, 
if = 8, !hen an  equation [ s, H I $  k, = 0 exists for all permissible values of 5. If 0 = fi, = 0, th:n [i, &](L k, k, = 0 for all the permissible values of k , ,  k,, etc. If U # 0, 
but fi,, . . . , U,  = 0, then we have a type of ,weak, symmetry, considered by Miller 
(1977) and  Poluyanov and  Voronin (1983). If U = U ,  = . . . = UN = 0, then all quantum 
numbers in the equation [i, fi]$kk,, ,k, = 0 are arbitrary, 9 commutes with H on the 
all the $g:nfu?ctions and due  to an!ssumed completeness of the systzm of eigenfunc- 
tions [S, HI = 0. In this latter case S is a strong symmetry operator (S commutes with 
H identically). 

Consider an  example. Let fi be a non-relativistic quantum Hamiltonian of a 
particle in a 5entr$yAsy9metric field. In this case the components of ?rbit?I a?gula,' 
momentum L = (L , ,  Ly,  L,) are strong symmetry operators. We have Yl = L2, Yz = L, 
in the capacity of the maximum set of mutually commuting operators. Equation (2.1) 
takes the form 

[ j, fi] = fi( fi - E )  + f i L l L 2  - L( L+ I ) ]  + f i M (  L, - M ) .  (2.2) 
We shall assume that the energy E belongs to the continuum spectra. An operator i, 
defined by equation (2.2) with the full right-hand side, commutes with fi only on the 
single eigenfunction and  depends on all three quantum numbers 

* A  

L S 9  r j l $ € L M  = O  S = SE,,. 

The following seven variants of symmetry arise when the operator of weak symmetry 
depends on the lesser quantity of quantum numbers: 

1 A 1  

f i L =  U M = o ( s E )  if = f iM  = 6( 2,) 
A A A A  A A 1 1 . A  

U = U, = O( S M )  U =  U,= U ,  = O ( S ) .  
Strong symmetry operators d o  not depend on quantum numbers. Note that strong 
symmetry is more important for physical applications than weak symmetry; however, 
weak symmetry is wider spread. Below we shall consider examples where weak 
symmetry permits a separation of variables in equation (1.1). 
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We shall assume that the differential or differential matrix symmetry operators s* 
contain the differentiatitn operations of order 1 or 2. The methods of searching for 
the symmetry operators S from (2.1) are analogous to those used in our previous paper 
(Poluyanov and Voronin 1983). They will also be explained by considering concrete 
examples in § 4. 

3. General properties of weak symmetry operators 

Let us assume that the operator 2, is a solution of the operator e p a t i o n  (2.1). As 
above, designate ,by 9eans  of RI a, set of eigenfunctions +, for H. On this set jI 
commutes with H :  H+, = E,+,, [S,, A]+,, = 0 if 4, €RI.  By means of S,(R,) we 
designate a map of set R I  as a result of the action of operator 3, on the set 0,. 

Weak symmetry operators have the following properties. 
(i) s* transforms the mutually degenerate eigenfunctions of fi into one another. 

Therefore s* is an invariance operator for the subspace of degenerate levels of fi, i.e. 
+, and j+, are the mutually degenerate eigenfunctions. Actually 

A A  As*+, = [ s*fi - fi( fi - E )  - f i l (  ?I - A , )  - .  . .]+kk,, ,k, = S H h  = 

(ii) A sum 4, + 3, commutes with fi on the intersection of sets 0, n 0,. If R ,  n R, = 
0, then s*, + 3, is not a weak symmetry operator. 

(iii) A product ,@, commutes with fi on the intersection R I  n $(a,) and is a weak 
symmetry operator if R ,  n S,(R,i# 0. 

(iv) A totality of operators SI with the coincided sets R ,  (0, = 0, = . . .) forms a 
linear space*. A 

(v) If U1 = U, = , , . = 0, then a totality of weak symmetry operators of a given 
degenerate eigenvalue (c, coincide with each other and consist of all mutually degener- 
ate eigenfunctions of H )  may have a Lie algebra structure. This algebra, generally 
speaking, is the infinite-dimensional one. We have 

[s*I,A]= 6yk-E) 
[ [ s*,, 37, fi] = [ s * I s * f I  - s*+l, fi] = [ s * , s * r , ,  fi] - [ s*+, fi] 

[ 3, A] = fiy H - E )  

= s * l [  9) A] + [ 41, AIS*” - [ p, f i ] s * t  - @[ j t ,  fi] 
= 3, fiyA - E )  + fiyA - E ) $ ” -  fiyfi - E ) $  - s*+(fi - E )  

= {[ s*!, fi7 + [ f i r ,  37 + [ OlI, 6q}( A - E) 
which is a commutator [k, &] and is also a weak symmetry operator of a given 
degenerate eigenvalue fi. 

Let a Hermitian weak symmetry operator induce a point transformation of variables 
(Shapovalov 1969, Miller 1977). Then we have the following properties. 

(vi) The point transformation of variables of the weak symmetry operator 2, 
generally speaking, does not transform one solution of (1.1) into another (that is, it 
does not generate the solutions) and does not retain the initial equation ( H  - E ) +  = 0 
invariant. The infinitesimal point transformation of variables in the linear approxima- 
tion (the small group parameters) generates the solutions and retains the initial equation 
(1.1) invariant. 

Let us introduce the operator of the point transformation gr tup T = exp(its*), where 
t is a real group parameter. Apparently, an expression +, = T+ = exp(its*)+ is not a 
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solution of the initial equation, because the powers ŝ  in the general case are not 
operators of weak symmetry. 

The equation ( H  - E ) #  = 0 in new variables takes the form 

The new equation does not coincide with the previous equation, because the operator 

,ifS(fi - Ele-i1S - - A - ~ + i t [ ~ , A j - ~ t ~ [ ~ , [ ~ , A ] ] + . . .  

is not proportional to fi - E on the subset of eigenfunctions R (such that [j, fi], = 6). 
If t is small, then in the linear approximation we have 

+, = (1 +i t$)+ 

and +, is the solution of the initial equation. The function +, is.the linear combination 
of the mutually degenerate eigenfunctions #,,, since in the same approximation, the 
expression 

e i ~ S ( f i  - Ele-'& 

fi - E + i t[  6( A - E )  + 6, ( ?, - A ,) + . . . + i', ( pN - A N ) ]  

= ( l + i t i r ) ( A - E )  

exists on th; set R. 
Thus, (H - E ) + ,  = 0, i.e. the approximate invariance of the equation on the set 0 

exists. 
(vii) If U,  = U, = . . . = UN = 0 in (2.1), then a generator of the point transformation 

group ? generates the solutions o,f the initial equation (1.1). In this case the initial 
equation is invariant concerning T, because 

A *  1 

eilS(fi - E)e-ifS = 6,(A-E) 
where 6, is some proportional operator, depending on the group parameter t. Thus, 
weak symmetry of the type 

[$A]= 6 ( f i - E )  
appears by its properties to be the closest to the strong symmetry 

[ $ f i ] = 6 .  
To conclude this section we formulate the physical interpretation of the weak 

symmetry. It may be interpreted as the dynamical symyetry of the system, reduced 
on the restricted types of motion (for the case when H is the Hamiltonian of the 
system). In the general case this symmetry does not possess group or algebraic 
properties. Nevertheless, its importance is shown in the following section. The weak 
symmetry is more widespread than strong symmetry. The weak symmetry may be a 
manifestation of strong symmetry on the limited class of motions. In particular, the 
weak symmetry operators may correspond to the discrete transformations of symmetry. 
This will be illustrated by the following examples. 
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4. The weak symmetry for quantum particle motion in the axial symmetrical and 
centrally symmetrical potentials 

4.1. Two-dimensional axially symmetrical potentials 

The Hamiltonian of the system in polar coordinates has the following form: 

(4 .1)  

Consider the differential weak symmetry operators, which are the solutions of the 
operator equation 

[$ AI = 6 ' (Lz  - m )  (4 .2)  

where 2, = -ia/acp is the strong symmetry operator of A (4 .1) .  This is the projection 
operator of orbital !ngular momentum on the symmetry axis of the potential and m 
is the eigenvalue of L,. The weak symmetry operators, defined by the operator equation 
(4 .2) ,  depend on one quantum number m. Thus, each operator of this type may be 
applied to the wavefunction with the given value of quantum number m at any value 
of the energy E. 

We carry out the analysis in the class of first-order differential symmetry operators 

In this case the commutation [ 3, A] is a second-order differential operator and therefore 
the operator 6' in (4 .2 )  must be a first-order differential operator: 

Substituting (4.1),  (4 .3)  and (4 .4 )  into (4 .2)  and equating coefficients of the same 
differential operators in the left- and right-hand sides we obtain the following system 
of linear partial differential equations: 

-- - 0  
a r  

aB2 1 aB, -+--= -iu 
a r  r2 acp 1 

2 (AB,+?)  +s= ar -mu,  

$ A B , + ,  -= -muz -iu, 
1 ac 
r acp 

~AC+B, -=-mmu3 d V  A = - - r - + - -  l a  a 1 a2 
d r  r a r  ar r2acp2' 

( 4 . 5 a )  

(4 .5b )  

(4 .5c)  

( 4 . 5 d )  

(4 .5e )  

(4.5.f)  
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Excluding the functions U, , u2, u3 from the system (4.5) we obtain 

_- - 0  dB1 
ar 

imaB aA 
r acp ar 

+ x 2 + - = 0  

im aA 
$ A A + ~ - + B ,  

r acp 

( 4 . 6 ~ )  

(4.6b) 

( 4 . 6 ~ )  

A = imB2+ C. (4.6d) 

The case A = B, = 0 corresponds to the trivial symmetry operators 

iB2(r, cp)(L - m )  (4.7) g b m )  = 

which any solution t,b = f (  r)e”‘ of the Schrodinger equation with the Hamiltonian 
(4.1) reduces to zero. The operator Sim’ may always be added to any other symmetry 
operator i‘m). 

If B, = 0, A = A(cp), then we obtain the following weak symmetry operator: 

(4.8) gp) = e - 2 i w  

This multiplication operator on the function transforms a solution with quantum 
number m into a solution with quantum number (-m). Weak symmetry of this type 
is the ‘track’ of strong discrete symmetry (a reflection in the plane containing the 
symmetry axis of the potential). This last is represented by the operator (4.3), which 
is defined on the subset of functions with a given m. If 2 V( r)  # a/ r + p /  r2, then gkm) 
is the single symmetry operator in the class (4.3). 

4.1.1. The Kratzer potential V(r). If V(r) is the two-dimensional Kratzer potential 

2 V ( r ) = a / r + p / r 2  (4.9) 

(a and p are real constants), then from the system of equations (4.6) it follows that 

B1= B,(cp) A(r, cp)=;I(cp)+K(cp) (4.10) 
1 

2Z(cp)= B;’(q)+2imB{(cp)+Bl(cp) 

aB,(cp) = K”(cp)+2imK’(cp) 

2 ( m 2 + p ) B ,  = If’(cp)+2imZ’(p)+ I(cp). 

( 4 . 1 1 ~ )  

(4.11b) 

( 4 . 1 1 ~ )  

Using equations (4.11) we obtain 

(4.12) 
d d -+2im-+l+2(m2+p)”2 Bl=O. (d“,‘. dcp 

The general solution of equation (4.12) has the following form: 

(4.13) B,(cp) = -C,e’”L(p - C,eiA22‘P + C,e iA3rp + c4eiA9(P 
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where 

= - m  * [ 1 +  m2+2(m2+p)1/2]1/2 

A 3 , 4 =  - m * [ l +  m2-2(m2+/3)1/2]1/2 Ci =constant. (4.14) 

From ( 4 . 1 1 ~ )  and (4.11b) we obtain 

(4.16) 

Suppose that in equations (4.15) and (4.16) the following inequalities are fulfilled: 

m 2 + p  $ 0  2(m2+p)' /2*1 Z O .  (4.17) 

Thus, the potential (4.9) permits four operators of weak symmetry: 

a 
ar  r 2( m 2 +  p ) ' l 2 +  1 

( 4 . 1 8 ~ )  

(4.18b) 

( 4 . 1 8 ~ )  

(4.18d ) 

Note that the weak symmetry operators 1, $ $ m )  ( i  = 1,2 ,3 ,4)  may be considered 
as a linear space basis: an arbitrary linear combination of these operators is the weak 
symmetry operator on the set of eigenfunctions which correspond to the arbitrary 
energy and the fixed quantum number m. The main property of these operators lies 
in the connection of mutually degenerate eigenfunctions of fi. However, it is impossible 
to introduce the structure of Lie algebras in the above mentioned linear space, since 
the product and coymutators of these operators are not weak symmetry operators. 

The functions Slm)f(r) exp (imp) are single-valued only when hi is an integer 
number. If p = 0, then all four operators $ m )  obey this condition. If 

p = ' ( p - m 2 - 1 ) 2 - m 2  (4.19) 

( I  is a whole number), then A I ,  A 2  are integer numbers at Z2-m2-  1 > O  and A 3 ,  h4 
are integer numbers at Z 2 -  m 2 -  1 < O .  If p has the form (4.19), then all eigenvalues 
E, are characterised for the given m by additional degeneration, which is not connected 
with the substitution m + -m. 

For the case p = 0, i.e. for the two-dimensional Coulomb potential, the operators 
3im), $im) coincide with the linear combination of strong symmetry operators A,, d,, 
which are the components of the two-dimensional Runge-Lentz vector (reduced on 
the subset of functions with the definite quantum number m ) :  

a 1 
ar r 

+ ( im sin p + t  cos c p )  -- ( m2 cos cp +$im sin c p )  --fa cos cp 
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a 1 
ar r 

+( - im cos cp+jsin cp)--(m2sin cp-lim cos cp)--ia sin cp (4.20) 

They transform the Coulomb wavefunction $; in the following way: 

3 y $ : +  W$:+ *;;: (4.21) 

where 

$:= Nr"'e-VrO(-n,, 21m( + 1, 2yr)eimp y = (-2E,)"2 

where n, is the radial quantuAm n5mber and a(., ., .) is a confluent hypergeometric 
function. Thus, the operators Sim), S:"change quantum numbers n, + n, 7 1, m + m * 1 
and keep E,, = - a 2 / 8 ( n ,  + m + invariable. As follows from (4.20), the form of the 
reduced strong symmetry operators A, ,A2 ($"'), Sim)) becomes simplified. They break 
up into the product of the radial and angular factors and, morefver, :he radial factor 
is a first-order differential operator. The classical analogues of Sim', Si"') also become 
simplified. This simplification is connected with the reduction of the phase space, 
which is accessible to the motion at the fixed motion integral. The analogous con- 
clusions are also correct for the reduced strong symmetry in the following examples. 

We note that the Coulomb radial Hamiltonian 

is factorised in the following form: 

where s y ,  4," are theAradia! factors of:he weak symmetry operators $", 9:"'). Thus, 
the radial operators S;"-', S," (S^,"+l, S y )  for the Coulomb radial Hamiltonian are the 
same operators that one should be able to find by the factorisation method (Infeld 
and Hull 1951). 

4.1.2. The two-dimensional oscillator V = 4 A  '( x2 + y 2 ) .  The solution of the operator 
equation 

[ $ E j ] =  O(A-E , )+  O l ( i z - m )  (4.22) 

gives the following weak symmetry operators, which depend on the energy E,, and the 
quantum number m :  

(4.23) 

E,, = A(2n,+ m +  1) = h ( n +  1). 
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The result of the action of 4, and J2 on the eigenfunction of I? at the definite energy 
and momentum values has the form 

&*E + *E:; 22*:+  * E 2  (4.24) 

where +% = constant X r i m '  exp ( -Ar2 /2 )@(-n , ,  1 + [ m i ,  hr') exp (imp).  Also, 4, and & 
are the linear combination of the reduced strong symmetry operators A, and A2: 

a2 i A i  A, = xy -- = - ( m  + 1 )s ,  +- ( m  - 1 ) j 2  
axay 2 2 

A - x 2 - y 2 - - + - =  -- SI +- S2 9 a x 2  ay2 2 2 
a2 a2 m + l  m - 1  A 

2 -  

(4.25) 

4.2. Three-dimensional centrally symmetrical potentials 

4.2.1. The Coulomb potential V ( r )  = + a / 2 r .  In this case the weak symmetry operators, 
which are the solution of the operator equation 

[i, I?]= f i , [ P - l ( l + l ) ]  (4.26) 

have the form 

s -  ----- A , - (  dr r I 2(1+1) a )((i-cos2e)---e-(i+i)core) d cos 8 
(4.27) 

+ I COS e (1 -cos2 e) - d 
d cos 6 

where is the orbitalAangularAmomentum operator. Acting on the Coulomb wavefunc- 
tion, the operators SI and S2 change the quantum numbers in the following way: 
n, + n, F 1, I + 1 + 1 ,  m + m, and leave the energy E invariant. The operators changing 
the quantum number m may be determined in the same way. The operator equation 
(4.26) may also be solved for the Kratzer potential 2 V (  r )  = /I/ r2 + a/ r. 

4.2.2. The three-dimensional harmonic potential V( r )  = fhr'. The weak symmetry 
operators for this potential have the form 

s,= ( i -cos  e)-- 
A (' ' ">( 
s -  --+--- 
A 2 - (  r d r  r2 

2 ( i + i ) c o s e )  
r d r  r2 l+: d cos e 
1 d 1-1 E, d 

(4.28) 

d cos 0 

They are the solutions of the operator equation 

[$A]= ~ ( f i - E , , ) + f i , [ ~ 2 - l ( I + 1 ) ] .  (4.29) 

Acting on ;he wav5function at the definite energy E,, and the orbital angular momentum 
1 values, SI and S2 change the quantum numbers in the following way: n, + n,  T 1, 
1 + 1 f 2, m + m and also leave E,  invariant. 

Note that the weak symmetry operators are not always reduced strong symmetry 
operators (an example is the case of the weak symmetry operators for the two- 
dimensional Kratzer potential). 
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So, forJhe spherically symmetric or axially symmetric potentials, the weak symmetry 
operator S may be factorised into the product of radial and angular operators. For 
the Coulomb and oscillator potentials the action of these radial and angular operators 
is analogous to theAaction of corresponding operators of dynamical non-invariance 
algebra. However, S is the invariance operator. In the general case the weak symmetry 
operators $. depend on the quantum numbers and do not form any Lie algebra. 

5. The symmetry of one class of differential matrix Schrodinger equation 

Consider a differential matrix Schrodinger equation of the form 

where F ( x  + iy) is an arbitrary analytical function of a variable z = x + iy. Equation 
(5.1) at some concrete functions F ( x + i y )  describes the nuclear dynamics in the 
neighbourhood of the point of two-fold degeneracy for the potential energy surfaces. 
We enumerate those cases when F ( z )  corresponds to the known Hamiltonians of the 
following physical systems. 

( i )  F ( z )  = az is a conical intersection of potential surfaces. 
(ii) F (  z )  = Pz2,  yz4 is a parabolical intersection of potential surfaces. 
(iii) F ( z )  = S / z  is a particle with spin f in a magnetic field of linear current. 
The Hamiltonian (5.1) may be written as 

where 
Z=x- iy  

612=(0 0 1  ()) G 2 1 = ( 1  0 0  o)% 
We shall find the symmetry operators s of the Hamiltonian fi (5.2), which commute 
with the A on a set of solutions for equation (5.1) with zero energy, i.e. 

[S, A] = CA, 
Let us carry out an analysis in the class of second-order operators 

a2 a’ a2 A a  * a  A 

az2 a z a i  az az ’ a i  S = A I  -+ 2AI2 -+ A2 :+ B1 -+ B -+ C (5.3) 

where &, i2 are the functional matrix, 6 is the constant matrix and A,,2,  A, ,  are 
functions of z, 2. As in the considered case, the ideal trivial symmetry (Miller 1977) 
operators have the form 

azaz 
where the coefficient A12 may always be reduced to zero by the similarity transformation 
with the corresponding choice of the function @ ( z ,  2) .  Thus, we consider A 1 2 =  0 
without loss of generality and determine the symmetry operators in the form 

a2 a2 A a  * a  A 

az2 az az az s= AI -+ A2 y+ B1 -+ B2 -+ C. (5.3a) 
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The coefficienis 6,, k2 and & are considered to be diagonal matrices. The propoci2nal- 
ity operator U should be the differential matrix first-order operator, since [S, HI is 
the differential matrix third-order operator. Suppose 

a a A  
a z  2 a z  G = u , - + u  -+b (5.4) 

A 

where a , ,  a2  are functions of z andAf and is a $agonal functional matrix. The 
assumqtion of the diagonality of the B ,  , i2, C and b matrices and also the particular 
form U are made in order to simplify the calculations. The following calculations 
show that under these limitations th,e yalysis does not lose it: rjchness of content. 

Calculating the commutator [ S ,  HI and the product UH and equating the 
coefficientsAof the :ape operators in the left- and right-hand sides of the operator 
equation [S, A]  = UH results in the following system of equations: 

aAl/a2 = 0 U ,  = -dA,/dz = u ~ ( z )  ( 5 5 2 )  

aS,/az = o a i 2 / a z  = o 6 = -(dfi,/dz) - (dfi2/dZ) (5 .5c)  

aA2/az = 0 a2 = -dA2/d2 = a2( 2 )  (5 .5b)  

Solving these equations, we obtain the operators 

( 5 . 5 d )  

( 5 . 5 e )  

(5.7) 

which are the symmetry operators of the Hamiltonian (5.2) with an arbitrary function 
F(z) .  The important property of 4, and 4, is their commutativity 

[ 4, , 4,] = 0. ( 5 . 8 )  

If F ( z )  is arbitrary,*then the symmetry of the Hamiltonian is exhausted by weak 
symmetry operators S, and j2 in the class of operators ( 5 . 3 ~ ) .  In the case of the power 
function 

F (  z )  = cyzs ( 5 . 9 )  

where a and s are the complex and real parameters, correspondingly there exists the 
third symmetry operator. It is a strong symmetry operator 

(5.10) 
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This symmetry operator has the meaning of the projection of a total momentum (orbital 
plus 'spin' momentum) on the symmetry axis of eigenvalues for the potential matrix 

U1,,= * I F ( z ) I =  *lairs r = (x2 + (5.11) 

The symmetry operator 4, satisfies the following commutation relations: 

(5.12) 

Taking into account the IcommuLation relations (5.8) and (5.12) we obtain that the 
symmetry operators SI,  S2 and S,  form the basis of a Lie algebra for the Euclidean 
motion group E(2), if s+2#O.  If F (z )  has the form (5 .9 ) ,  then the separation of 
variables can be made in the system of equations (5.1) in two types of coordinates: in 
the polar coordinates ( r ,  cp) and in the coordinates (z, 5). If F (z )  is arbitrary, then the 
adiabatic potential surfaces = *lF(z)I do not have any geometrical symmetry. In 
this case the separation of variables can still be made for equations (5.1) in coordinates 
( z ,  Z) .  It is a result of weak symmetry, represented by operators 2, and s2. Suppose 
in (5.1) 

x1= AI(Z)Bl(f) x 2  = A2(Z)B2(f) (5.13) 

we obtain the second-order differential equations for A2(z) and B,(Z) 

(d2A2/dz2) -hlA,F(z)A2=0 

(d2B1/dZ2) -(4AlA2)-'F(5)B1 = O  

(5.14) 

(5.15) 

where A I  and A 2  are the separation constants. As the operators A, SI and s2 are 
mutually computed, !hey have (at zero energy) common eigenfunctions. If the eigen- 
functions of SI and S ,  have the form (5.13) 

then, after separation of variables, we obtain the same equations (5.14) and (5.15), 
where c1 and U, appear instead of A 1 A 2  and 1/4hlh2. Thus, and j 2  were actually 
the operators for the constants of the separation of variables. This fact proves the 
existence of coupling betweenJhe given separation of variables and weak symmetry, 
represented byJhe opeTators SI and j 2 .  It should be noted that for the ca2e s = -1 
the operators SI and S2 are equivalent (on the ideal of trivial symmetry So) to the 
strong symmetry operators 

4: = + ( 5 / 2 a ) A  [&,c i ]=8  
4; = 3, + (z /2a)  A [&, ci] = 8. 

They are the matrix analogues of components for th,e two-c!imensional Runge-Lentz 
vector (Pron'ko and Stroganov 1977). The operators Si and S;  are the strong symmetry 
operators of the Hamiltonian (5.2) at F ( z ) = a / z .  They form with the 4, (on the 
eigenfunctions of the Hamiltonian) the algebras SO(3) and SO(2, 1) for the discrete 
and continuum spectra, correspondingly. 

6. Conclusion 

The analysis of the strong symmetry should precede the necessity of the solution ,Of 
the basic operator equation (2.1). The functional independent symmetry operators Xi, 
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identically commuting with the Hamiltonian, should be found; a maximal set of 
mutually commuting stro_ng symmetry operators ?, must be constructed and the 
spectrum of all operators Y, should be determined. However, all information on strong 
symmetry for the Hamiltonians of physical systems is usually known; therefore the 
operator equation for the study of wea! sYmm:try*may be formulated easily. 

The use of the operator equation [ S ,  HI = U ( H  - E )  and the symmetry operators 
2, inducing the point transformation of variables, is equivalent to the analysis of 
symmetry by the Lie-Ovsjannikov method (Ovsjannikov 1978). In this case the initial 
equation is invariant with respect to the point transformations. If the weak symmetry 
operator satisfies the operator equation (2.1) with some c,, . . . , I!?N not all equal to 
zero, then an approximate invariance of equation (1.1) exitts only for the infinitesimal 
transformations, on the definite subset of eigenfunctions H. The absence of algebraic 
structure in the linear space of weak symmetry operators is connected with this fact. 
It is evident that the most significant form of weak symmetry corresponds to the case 
U, = 0 ( i  = 1, . . . , N ) .  However, the weak symmetry operators, corresponding to some 
I!?, , . . . , i', not all equal to zero, are of interest. The weak symmetry of this type 
sometimes gives new symmetry operators. This weak symmetry is connected, for some 
potentials, with the factorisation method. Finally, the weak symmetry operators have 
an evident interpretation in classical mechanics: they are integrals of motion on reduced 
phase space; 

At any U, # 8 the weak symmetry operators 3 may be useful for the explanation 
of accidental degenerations of fi eigenvalues (at some determined values of the 
Hamiltonian parameters). At the present time this problem is still under consideration. 
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